Posts in Category: Snort

Snort 2.9.9.x on Ubuntu – Part 8: Conclusion

  1. Installing Snort
  2. Configuring Snort to Run as a NIDS
  3. Writing and Testing a Single Rule With Snort
  4. Installing Barnyard2
  5. Installing PulledPork
  6. Creating Upstart Scripts for Snort on Ubuntu 14
  7. Creating systemD Scripts for Snort on Ubuntu 16
  8. Installing BASE
  9. Conclusion

Where to Go From Here

I hope this series of articles has been helpful to you. Please feel free to provide feedback, both issues you experienced and recommendations that you have. The goal of this guide was not just for you to create a Snort NIDS, but to understand how all the parts work together, and get a deeper understanding of all the components, so that you can troubleshoot and modify your Snort NIDS with confidence.

Capturing More Traffic With Snort

You will probably want to configure your network infrastructure to mirror traffic meant for other hosts to your Snort sensor. This configuration is dependent on what network equipment you are using. If you are running Snort as a Virtual Machine on a VMware ESXi server, you can configure promiscuous mode for ESXi by following my instructions in this article: configure promiscuous mode for ESXi.

For different network infrastrucutre, you will need to do a little research to configure network mirroring for your Snort server. Cisco calls this a span port, but most other vendors call this Port Mirroring. Instructions for Mikrotik (a linux based switch and router product that I like).  If you run DD-WRT, it can be configured with iptables, like any linux based system. If you have network equipment not listed above, any search engine should point you towards a solution, if one exists. Note that many consumer switches will not have the ability to mirror ports.

You can also purchase devices specifically made to mirror data (called taps). Some products that have been recommended on the Snort-Users list are:

More Advanced Snort Configuration

Snort has the ability to do much more than we’ve covered in this set of articles. Hopefully you’ve learned enough through this setup that you will be able to implement more advanced configurations and make Snort work for you. Some things that Snort is capable of:

Some other related articles I have written:

Recommended Reading

Feedback

I would love to get feedback from you about this guide. Recommendations, issues, or ideas, please contact me here.

Snort 2.9.9.x on Ubuntu – Part 7: Installing BASE

  1. Installing Snort
  2. Configuring Snort to Run as a NIDS
  3. Writing and Testing a Single Rule With Snort
  4. Installing Barnyard2
  5. Installing PulledPork
  6. Creating Upstart Scripts for Snort on Ubuntu 14
  7. Creating systemD Scripts for Snort on Ubuntu 16
  8. Installing BASE
  9. Conclusion

Installing BASE On Ubuntu

BASE is a simple web GUI for Snort. Alternate products include Snorby, Splunk, Sguil, AlienVault OSSIM, and any syslog server.

Splunk is a fantastic product, great for ingesting, collating, and parsing large data sets. Splunk is free to use (limited to 500 MB of data per day, which is a lot for a small shop). Sguil client is an application written in tcl/tk. Snorby is abandoned, and relies on old versions of many Ruby packages that makes documenting the installation difficult, and a constantly changing target.

I’ve chosen to use BASE in this guide because it’s simple to setup, simple to use, and works well for what it does. Both BASE and Snorby are abandoned projects, and while Snorby gives a nice web-2.0 interface, since it is written in Ruby-on-Rails, the Ruby packages it relies on are constantly upgrading, which causes compatibility issues with other required Snorby packages, which causes too many installation problems. If you want to try installing Snorby, please see these unsupported out of date guides for Ubuntu 14 or Ubuntu 16.

There is a slight difference between BASE on Ubuntu 14 versus 16: BASE requires PHP 5, which isn’t available in the Ubuntu 16 archives (Ubuntu has moved on to PHP 7 in this release), so we have to use a PPA on Ubuntu 16 to install the php 5 packages:

# Ubuntu 16 only:
sudo add-apt-repository ppa:ondrej/php
sudo apt-get update
sudo apt-get install -y apache2 libapache2-mod-php5.6 php5.6-mysql php5.6-cli php5.6 php5.6-common php5.6-gd php5.6-cli php-pear php5.6-xml

in Ubuntu 14, we can just install the necessary libraries:

# Ubuntu 14 only:
sudo apt-get install -y apache2 libapache2-mod-php5 php5 php5-mysql php5-common php5-gd php5-cli php-pear

next install Pear image Graph:

sudo pear install -f --alldeps Image_Graph

Download and install ADODB:

cd ~/snort_src
wget https://sourceforge.net/projects/adodb/files/adodb-php5-only/adodb-520-for-php5/adodb-5.20.8.tar.gz
tar -xvzf adodb-5.20.8.tar.gz
sudo mv adodb5 /var/adodb
sudo chmod -R 755 /var/adodb

Download BASE and copy to apache root

cd ~/snort_src
wget http://sourceforge.net/projects/secureideas/files/BASE/base-1.4.5/base-1.4.5.tar.gz
tar xzvf base-1.4.5.tar.gz
sudo mv base-1.4.5 /var/www/html/base/

Create the BASE configuration file:

cd /var/www/html/base
sudo cp base_conf.php.dist base_conf.php

Now edit the config file:

sudo vi /var/www/html/base/base_conf.php

with the following settings (note that the trailing slash on line 80 is required, despite the instructions in the configuration file):

$BASE_urlpath = '/base';                   # line 50
$DBlib_path = '/var/adodb/';               #line 80
$alert_dbname     = 'snort';               # line 102
$alert_host       = 'localhost';
$alert_port       = '';
$alert_user       = 'snort';
$alert_password   = 'MySqlSNORTpassword';   # line 106

While in the base conf.php file, you will also want to comment out line 457 (we don’t want the DejaVuSans font), and un-comment (remove the two backslashes) from line 459, enabling a blank font. The section for fonts (begining at line 456) should look like this:

//$graph_font_name = "Verdana";
//$graph_font_name = "DejaVuSans";
//$graph_font_name = "Image_Graph_Font";
$graph_font_name = "";

Set permissions on the BASE folder, and since the password is in the base conf.php file, we should prevent other users from reading it:

sudo chown -R www-data:www-data /var/www/html/base
sudo chmod o-r /var/www/html/base/base_conf.php

restart Apache:

sudo service apache2 restart

The last step to configure BASE is done via http:

  1. Browse to http://ServerIP/base/index.php and click on the setup page link (replace ServerIP with the IP of your Snort Server).
  2. Click on the Create BASE AG button on the upper right of the page.
  3. Click on the Main page link.

Note: If you read through the BASE configuration file, there are a number of other options you can implement if you like. A few options are SMTP Email alerts, IP Address to Country Support, and user authentication.

Congratulations, if you’ve made it this far, you have a fully-functioning Snort system. Please continue on to the Conclusion for more things you can do with Snort.

Snort 2.9.9.x on Ubuntu – Part 6b: Creating systemD Scripts for Snort on Ubuntu 16

  1. Installing Snort
  2. Configuring Snort to Run as a NIDS
  3. Writing and Testing a Single Rule With Snort
  4. Installing Barnyard2
  5. Installing PulledPork
  6. Creating Upstart Scripts for Snort on Ubuntu 14
  7. Creating systemD Scripts for Snort on Ubuntu 16
  8. Installing BASE
  9. Conclusion

Overview

In the previous articles in this series, we have created a complete Snort NIDS with a web interface and rulesets that automatically update.  In this article, we will finalize the configuration of our Snort service by creating systemD scripts for the Snort and Barnyard2 daemons. If you are running Ubuntu 14, you should go see my Upstart article instead of this article.

Creating a systemD startup script in Ubuntu 16

Ubuntu 16 has moved to systemD for services / daemons. For more information about creating and managing systemD servcies, please see this excellent article.

To create the Snort systemD service, use an editor to create a service file:

sudo vi /lib/systemd/system/snort.service

with the following content (change ens160 if different on your system):

[Unit]
Description=Snort NIDS Daemon
After=syslog.target network.target

[Service]
Type=simple
ExecStart=/usr/local/bin/snort -q -u snort -g snort -c /etc/snort/snort.conf -i ens160

[Install]
WantedBy=multi-user.target

Now we tell systemD that the service should be started at boot:

sudo systemctl enable snort

And start the Snort service:

sudo systemctl start snort

Verify the service is running

systemctl status snort

Next, create the Barnyard2 systemd service. We will add two flags here: -D to run as a daemon, and -a /var/log/snort/archived logs, this will move logs that Barnyard2 has processed to the /var/log/snort/archived/ folder. Use an editor to create a service file:

sudo vi /lib/systemd/system/barnyard2.service

With the following content:

[Unit]
Description=Barnyard2 Daemon
After=syslog.target network.target

[Service]
Type=simple
ExecStart=/usr/local/bin/barnyard2 -c /etc/snort/barnyard2.conf -d /var/log/snort -f snort.u2 -q -w /var/log/snort/barnyard2.waldo -g snort -u snort -D -a /var/log/snort/archived_logs

[Install]
WantedBy=multi-user.target

Now we tell systemD that the service should be started at boot:

sudo systemctl enable barnyard2

And start the barnyard2 service:

sudo systemctl start barnyard2

Verify the service is running

systemctl status barnyard2

Reboot the computer and check that both services are started

user@snortserver:~$ service snort status
snort start/running, process 1116
user@snortserver:~$ service barnyard2 status
barnyard2 start/running, process 1109
user@snortserver:~$

If both services are running, you are ready to move to the next section, where you will install BASE, a web-based GUI to view and profile alert data: Installing BASE

Snort 2.9.9.x on Ubuntu – Part 6a: Creating Upstart Scripts for Snort on Ubuntu 14

  1. Installing Snort
  2. Configuring Snort to Run as a NIDS
  3. Writing and Testing a Single Rule With Snort
  4. Installing Barnyard2
  5. Installing PulledPork
  6. Creating Upstart Scripts for Snort on Ubuntu 14
  7. Creating systemD Scripts for Snort on Ubuntu 16
  8. Installing BASE
  9. Conclusion

Overview

Creating the Upstart Scripts for Ubuntu 14

In the previous articles in this series, we have created a complete Snort NIDS with a web interface and rulesets that automatically update.  In this article, we will finalize the configuration of our Snort service by creating Upstart scripts for the Snort and Barnyard2 daemons. If you are running Ubuntu 16, you should go see my systemD article instead of this article.

First create the Snort Upstart script:

sudo vi /etc/init/snort.conf

We will insert the below content into this Upstart script.  Note that we are using the same flags that we used in earlier articles, so if Snort ran correctly for you earlier, then you shouldn’t need to change any of these flags:

description "Snort NIDS service"
stop on runlevel [!2345]
start on runlevel [2345]
script
    exec /usr/sbin/snort -q -u snort -g snort -c /etc/snort/snort.conf -i eth0 -D
end script

Now make the script executable, and tell Upstart that the script exists:

sudo chmod +x /etc/init/snort.conf
initctl list | grep snort
	snort stop/waiting

do the same for our Barnyard2 script:

sudo vi /etc/init/barnyard2.conf

with the following content:

description "barnyard2 service"
stop on runlevel [!2345]
start on runlevel [2345]
script
    exec /usr/local/bin/barnyard2 -c /etc/snort/barnyard2.conf -d /var/log/snort -f snort.u2 -w /var/log/snort/barnyard2.waldo -g snort -u snort -D -a /var/log/snort/archived_logs
end script

Note that we have added a new flag here that we didn’t use before: -a /var/log/snort/archived_logs, this will move logs that Barnyard2 has processed to the /var/log/snort/archived_logs/ folder.

Now make the script executable, and tell Upstart that the script exists:

sudo chmod +x /etc/init/barnyard2.conf
initctl list | grep barnyard
	barnyard2 stop/waiting

Reboot the computer and check that both services are started:

user@snortserver:~$ service snort status
snort start/running, process 1116
user@snortserver:~$ service barnyard2 status
barnyard2 start/running, process 1109
user@snortserver:~$

If both services are running, you are ready to move to the next section, where you will install BASE, a web-based GUI to view and profile alert data: Installing BASE

Snort 2.9.9.x on Ubuntu – Part 5: Installing PulledPork

  1. Installing Snort
  2. Configuring Snort to Run as a NIDS
  3. Writing and Testing a Single Rule With Snort
  4. Installing Barnyard2
  5. Installing PulledPork
  6. Creating Upstart Scripts for Snort on Ubuntu 14
  7. Creating systemD Scripts for Snort on Ubuntu 16
  8. Installing BASE
  9. Conclusion

Onwards

In the previous two sections of this article, we installed Snort and configured it to work as a NIDS with Barnyard2 processing packets that generated alerts based on a rule. In this article, we are going to install a Perl script called PulledPork, which will automatically download the latest rulesets from the Snort website.

Oinkcode

To download the main free ruleset from Snort, you need an oinkcode. Register on the Snort website and save your oinkcode before continuing, as the oinkcode is required for the most popular free ruleset.

Installing PulledPork

Install the PulledPork pre-requisites:

sudo apt-get install -y libcrypt-ssleay-perl liblwp-useragent-determined-perl

Download the latest PulledPork and install. Here we copy the actual perl file to /usr/local/bin and the needed configuration files to /etc/snort:

cd ~/snort_src
wget https://github.com/shirkdog/pulledpork/archive/master.tar.gz -O pulledpork-master.tar.gz
tar xzvf pulledpork-master.tar.gz
cd pulledpork-master/

sudo cp pulledpork.pl /usr/local/bin
sudo chmod +x /usr/local/bin/pulledpork.pl
sudo cp etc/*.conf /etc/snort

Test that PulledPork runs by running the following command, looking for the output below:

user@snortserver:~$ /usr/local/bin/pulledpork.pl -V
PulledPork v0.7.3 - Making signature updates great again!

user@snortserver:~$

Now that we are sure that PulledPork works, we need to configure it:

sudo vi /etc/snort/pulledpork.conf

Make the following changes to the pulledpork.conf file. Anywhere you see ‹oinkcode› enter your oinkcode from the Snort website.  I have included line numbers to help you identify the location of these lines in the configuration file.

Line 19:  enter your oinkcode where appropriate (or comment out if no oinkcode)
Line 29:  Un-comment for Emerging threats ruleset (not tested with this guide)

Line 74:  change to: rule_path=/etc/snort/rules/snort.rules
Line 89:  change to: local_rules=/etc/snort/rules/local.rules
Line 92:  change to: sid_msg=/etc/snort/sid-msg.map
Line 96:  change to: sid_msg_version=2

Line 119:  change to: config_path=/etc/snort/snort.conf

Line 133:  change to: distro=Ubuntu-12-04

Line 141:  change to: black_list=/etc/snort/rules/iplists/black_list.rules
Line 150:  change to: IPRVersion=/etc/snort/rules/iplists

We want to run PulledPork once manually to make sure it works. We use the following flags:

 -c /etc/snort/pulledpork.conf      the location of the snort.conf file
 -l                                 Write detailed logs to /var/log

Run the following command:

sudo /usr/local/bin/pulledpork.pl -c /etc/snort/pulledpork.conf -l 

After this command runs (it takes some time), you should now see snort.rules in /etc/snort/rules, and .so rules in /usr/local/lib/snort_dynamicrules. Pulled Pork combines all the rulesets that it downloads into these two files. You need to make sure to add the line: include $RULE_PATH/snort.rules to the snort.conf file, or the pulled pork rules will never be read into memory when Snort starts:

sudo vi /etc/snort/snort.conf

Add the following line to enable snort to use the rules that PulledPork downloaded (line 547), after the line for local.rules:

include $RULE_PATH/snort.rules

Since we have modified snort.conf, we should test that Snort loads correctly in NIDS mode with the PulledPork rules included:

sudo snort -T -c /etc/snort/snort.conf -i eth0

Once that is successful, we want to test that Snort and Barnyard2 load correctly when run manually as daemons:

sudo /usr/local/bin/snort -u snort -g snort -c /etc/snort/snort.conf -i eth0 -D
sudo barnyard2 -c /etc/snort/barnyard2.conf -d /var/log/snort -f snort.u2 -w /var/log/snort/barnyard2.waldo -g snort -u snort -D

As before, ping the IP address of the Snort eth0 interface, and then check the database for more events (remember to use the MYSQLSNORTPASSWORD):

mysql -u snort -p -D snort -e "select count(*) from event"

The number of events reported should be greater than what you saw the last time you ran this command. Now that we are sure that PulledPork runs correctly, we want to add PulledPork to root’s crontab to run daily:

sudo crontab -e

Choose any editor if prompted

The Snort team has asked you to randomize when PulledPork connects to their server to help with load balancing. In the example below, we have PulledPork checking at 04:01 every day. Change the minutes value (the 01 below) to a value between 0 and 59, and the hours value (the 04 below) to a value between 00 and 23. For more info on crontab layout, check here:

01 04 * * * /usr/local/bin/pulledpork.pl -c /etc/snort/pulledpork.conf -l

Stop the running daemons from earlier testing:

user@snortserver:~$ ps aux | grep snort
snort     1296  0.0  2.1 297572 43988 ?        Ssl  03:15   0:00 /usr/local/bin/snort -q -u snort -g snort -c /etc/snort/snort.conf -i eth0 -D
user      1314  0.0  0.0   4444   824 pts/0    S+   03:17   0:00 grep --color=auto snort
user@snortserver:~$ sudo kill 1296

user@snortserver:~$ ps aux | grep barnyard2
snort     1298  0.0  2.1 297572 43988 ?        Ssl  03:15   0:00 barnyard2 -c /etc/snort/barnyard2.conf -d /var/log/snort -f snort.u2 -w /var/log/snort/barnyard2.waldo -g snort -u snort -D
user      1316  0.0  0.0   4444   824 pts/0    S+   03:17   0:00 grep --color=auto barnyard2
user@snortserver:~$ sudo kill 1298

Note: Snort needs to be reloaded to see the new rules. This can be done with kill -SIGHUP snort-pid, or you can restart the snort service (once that’s created in a later part of this guide).

Additional note about shared object rules: In addition to regular rules, The above section will download Shared object rules. Shared object rules are also known as ”Shared Object rules”, ”SO rules”, ”pre-compiled rules”, or ”Shared Objects”. These are detection rules that are written in the Shared Object rule language, which is similar to C.

These rules are pre-compiled by the provider of the rules, and allow for more complicated rules, and allow for obfuscation of rules (say to detect attacks that haven’t been patched yet, but the vendor wants to allow detection without revealing the vulnerability). These rules are compiled by the vendor for specific systems. One of these systems is Ubuntu 12, and luckily these rules also work on Ubuntu 14 and 15.

Congratulations, if you have output similar to the above then you have successfully Configured PulledPork. Continue to the next section to install startup scripts for Snort and Barnyard2. Choose one of the two following links, depending on your version of Ubuntu. You will create an Upstart scripts for Ubuntu 12 and 14, and a systemD scripts for Ubuntu 15.

Choose One of the following to continue:
Ubuntu 14: Creating Upstart Scripts for Snort and Barnyard2
Ubuntu 16: Creating systemD Scripts for Snort

Snort 2.9.9.x on Ubuntu – Part 4: Installing Barnyard2

  1. Installing Snort
  2. Configuring Snort to Run as a NIDS
  3. Writing and Testing a Single Rule With Snort
  4. Installing Barnyard2
  5. Installing PulledPork
  6. Creating Upstart Scripts for Snort on Ubuntu 14
  7. Creating systemD Scripts for Snort on Ubuntu 16
  8. Installing BASE
  9. Conclusion

Installing Barnyard2

In the previous three articles in this series, we installed Snort, configured it to run as a NIDS, and configured a rule. In this article, we are going to install and configure Barnyard2, which is a dedicated spooler that will help reduce the load on the Snort server.

Notes

You will be prompted to create both a MySQL root password, as well as a password for a MySQL database snort user. In the examples below, we have chose to use MYSQLROOTPASSWORD as the MySQL root password, and MYSQLSNORTPASSWORD as the MySQL database snort user. Please note the differences when working below.

Onward

First, we need to install some pre-requisites:

sudo apt-get install -y mysql-server libmysqlclient-dev mysql-client autoconf libtool

You will be prompted for the MySQL root password. We choose MYSQLROOTPASSWORD for the below examples.

Next, we need to edit the snort.conf:

sudo vi /etc/snort/snort.conf

We need to add a line that tells Snort to output events in binary form (so that Barnyard2 can read them). After line 520 in /etc/snort/snort.conf (a line that is a commented-out example), add the following line and save the file:

output unified2: filename snort.u2, limit 128

This line tells snort to output events in the unified2 binary format (which is easier for snort to output rather than human-readable alerts).

Next we need to get, configure, and install Barnyard2.

Note on Barnyard2 Version: In the commands below, we will be downloading the current head release of Barnyard2 rather than a specific release number, which at this time is 2.1.14. Now download and prepare to install:

cd ~/snort_src
wget https://github.com/firnsy/barnyard2/archive/master.tar.gz -O barnyard2-Master.tar.gz
tar zxvf barnyard2-Master.tar.gz
cd barnyard2-master
autoreconf -fvi -I ./m4

Barnyard2 needs access to the dnet.h library, which we installed with the Ubuntu libdumbnet package earlier. However, Barnyard2 expects a different file name for this library. Create a soft link from dnet.h to dubmnet.h so there are no issues:

sudo ln -s /usr/include/dumbnet.h /usr/include/dnet.h
sudo ldconfig

Depending on the architecture of your system (x86 or x64), choose to run one of the following lines to tell Barnyard2 where the MySQL libraries are:

./configure --with-mysql --with-mysql-libraries=/usr/lib/x86_64-linux-gnu
./configure --with-mysql --with-mysql-libraries=/usr/lib/i386-linux-gnu

Then continue with the install:

make
sudo make install

Barnyard2 is now installed to /usr/local/bin/barnyard2. Test to ensure that Barnyard2 installed properly by running:

user@snortserver$ /usr/local/bin/barnyard2 -V

To configure Snort to use Barnyard2, we need to copy a few files from the source package:

sudo cp ~/snort_src/barnyard2-master/etc/barnyard2.conf /etc/snort/

# the /var/log/barnyard2 folder is never used or referenced
# but barnyard2 will error without it existing
sudo mkdir /var/log/barnyard2
sudo chown snort.snort /var/log/barnyard2

sudo touch /var/log/snort/barnyard2.waldo
sudo chown snort.snort /var/log/snort/barnyard2.waldo

Since Barnyard2 saves alerts to our MySQL database, we need to create that database, as well as a ‘snort’ MySQL user to access that database. Run the following commands to create the database and MySQL user.

When prompted for a password, use the MYSQLROOTPASSWORD . You will also be setting the MySQL snort user password in the fourth mysql command (to MYSQLSNORTPASSWORD), so change it there as well.

$ mysql -u root -p
mysql> create database snort;
mysql> use snort;
mysql> source ~/snort_src/barnyard2-master/schemas/create_mysql
mysql> CREATE USER 'snort'@'localhost' IDENTIFIED BY 'MYSQLSNORTPASSWORD';
mysql> grant create, insert, select, delete, update on snort.* to 'snort'@'localhost';
mysql> exit

Now that the Snort database has been created, we need to tell Barnyard2 about the details of the database. Edit the Barnyard2 configuration file:

sudo vi /etc/snort/barnyard2.conf

and at the end of the file, append this line:

output database: log, mysql, user=snort password=MYSQLSNORTPASSWORD dbname=snort host=localhost sensor name=sensor01

Since the password is in the barnyard2.conf file, we should prevent other users from reading it:

sudo chmod o-r /etc/snort/barnyard2.conf

Now Barnyard2 is configured to work with Snort. To test, let’s run Snort and Barnyard2 and generate some alerts.  First, we run Snort as a daemon. We use the same parameters as before, with the addition of the -D flag, which tells snort to run as a daemon, and we removed -A Console since we don’t want alerts to show on the screen. Take note of the PID of the process so you can kill it later if needed:

sudo /usr/local/bin/snort -q -u snort -g snort -c /etc/snort/snort.conf -i eth0 -D

Ping the IP address of the interface specified above (eth0). If you check Snort’s log directory, you should see a file called snort.u2.nnnnnnnnnn (the n’s are replaced by numbers). These are the binary alerts that snort has written out for Barnyard2 to process.

Now we want to tell Barnyard2 to look at these events and load into the snort database instance. We run Barnyard2 with the following flags:

-c /etc/snort/barnyard2.conf        the Barnyard2 configuration file
-d /var/log/snort                   the location to look for the snort binary output file
-f snort.u2                         the name of the file to look for.
-w /var/log/snort/barnyard2.waldo   the path to the waldo file (checkpoint file).
-u snort                            run Barnyard2 as the following user after startup
-g snort                            run Barnyard2 as the following group after startup

Run the following command:

sudo barnyard2 -c /etc/snort/barnyard2.conf -d /var/log/snort -f snort.u2 -w /var/log/snort/barnyard2.waldo -g snort -u snort

you should see output similar to the below:

        --== Initialization Complete ==--

  ______   -*> Barnyard2 <*-
 / ,,_  \  Version 2.1.14 (Build 336)
 |o"  )~|  By Ian Firns (SecurixLive): http://www.securixlive.com/
 + '''' +  (C) Copyright 2008-2013 Ian Firns <firnsy@securixlive.com>

Using waldo file '/var/log/snort/barnyard2.waldo':
    spool directory = /var/log/snort
    spool filebase  = snort.u2
    time_stamp      = 1412527313
    record_idx      = 16
Opened spool file '/var/log/snort/snort.u2.1412527313'
Closing spool file '/var/log/snort/snort.u2.1412527313'. Read 16 records
Opened spool file '/var/log/snort/snort.u2.1412528990'
Waiting for new data

Use ctrl-c to stop barnyard2 from running, then stop the snort Daemon using ps to find and terminate it as in the example below):

user@snortserver:~$ ps aux | grep snort
      snort     1296  0.0  2.1 297572 43988 ?        Ssl  03:15   0:00 /usr/local/bin/snort -q -u snort -g snort -c /etc/snort/snort.conf -i eth0 -D
      user      1314  0.0  0.0   4444   824 pts/0    S+   03:17   0:00 grep --color=auto snort
user@snortserver:~$ sudo kill 1296
user@snortserver:~$

Congratulations, if you have output similar to the above then you have successfully Configured Barnyard2. Continue to the next section to install PulledPork

Snort 2.9.9.x on Ubuntu – Part 3: Writing and Testing a Single Rule With Snort

  1. Installing Snort
  2. Configuring Snort to Run as a NIDS
  3. Writing and Testing a Single Rule With Snort
  4. Installing Barnyard2
  5. Installing PulledPork
  6. Creating Upstart Scripts for Snort on Ubuntu 14
  7. Creating systemD Scripts for Snort on Ubuntu 16
  8. Installing BASE
  9. Conclusion

Writing and Testing a Single Rule With Snort

In the previous two articles in this series, we installed Snort an configured it to run as a NIDS. In this article, we are going to create a rule which causes Snort to generate an alert whenever it sees an ICMP message. If you want, you can skip this section, as it is not required to get a Snort NIDS up and running, but it will help you to gain a much better understanding of how Snort rules are created and loaded.

Onward

In the previous article, we created the /etc/snort/rules/local.rules file and left it empty. We also edited the snort.conf file to tell Snort to load this local.rules file (when we un-commented the line: include $RULE_PATH/local.rules in snort.conf). When Snort starts, it will use the include directive in snort.conf to load all rules in local.rules. The local.rules file is a place where we can place rules that are specific to our environment, and is great for testing.

First, we need to edit the local.rules file:

sudo vi /etc/snort/rules/local.rules

input the following text and save the file:

alert icmp any any -> $HOME_NET any (msg:"ICMP test detected"; GID:1; sid:10000001; rev:001; classtype:icmp-event;)

What this rule says is that for any ICMP packets it sees from any network to our HOME_NET, generate an alert with the text ICMP test. The other information here (GID, REV, classtype) are used group the rule, and will be helpful when you install BASE.

Barnyard2 doesn’t read meta-information about alerts from the local.rules file. Without this information, Barnyard2 won’t know any details about the rule that triggered the alert, and will generate non-fatal errors when adding new rules with PulledPork (done in a later step). To make sure that barnyard2 knows that the rule we created with unique identifier 10000001 has the message ”ICMP Test Detected”, as well as some other information (please see this blog post for more information). We add the following two lines to the /etc/snort/sid-msg.map file:

#v2
1 || 10000001 || 001 || icmp-event || 0 || ICMP Test detected || url,tools.ietf.org/html/rfc792

(the #v2 tells barnyard2 that the next line is the version 2 format, rather than v1)

Since we have made changes to the file that snort loads (local.rules), it is a good idea to test the configuration file again:

sudo snort -T -c /etc/snort/snort.conf -i eth0

If successful, you should be able to scroll up through the output and see that Snort has loaded our rule:

		+++++++++++++++++++++++++++++++++++++++++++++++++++
		Initializing rule chains...
		1 Snort rules read
			1 detection rules
			0 decoder rules
			0 preprocessor rules
		1 Option Chains linked into 1 Chain Headers
		0 Dynamic rules
		+++++++++++++++++++++++++++++++++++++++++++++++++++

		+-------------------[Rule Port Counts]---------------------------------------
		|             tcp     udp    icmp      ip
		|     src       0       0       0       0
		|     dst       0       0       0       0
		|     any       0       0       1       0
		|      nc       0       0       1       0
		|     s+d       0       0       0       0
		+----------------------------------------------------------------------------

Now to test the rule.  We need to verify that Snort generates an alert when it processes an ICMP packet. We will launch Snort with the following options:

-A console                    the console option prints fast mode alerts to stdout
-q                            Quiet. Don't show banner and status report.
-u snort                      run snort as the following user after startup
-g snort                      run snort as the following group after startup
-c /etc/snort/snort.conf      the path to our snort.conf file
-i eth0                       the interface to listen on

Run Snort with the command below, modifying the parameters as required specific for your configuration:

sudo /usr/local/bin/snort -A console -q -u snort -g snort -c /etc/snort/snort.conf -i eth0

Note: If you are running Ubuntu 16, remember that your interface name is not eth0.

Once you have started Snort with the above command, you need use another computer or another terminal window to ping the interface that you directed Snort to listen on.  You should see output similar to the below on the terminal of the Snort machine:

10/31-02:27:19.663643  [**] [1:10000001:1] ICMP test detected [∗∗] [Classification: Generic ICMP event] [Priority:3] {ICMP} 10.0.0.74 -> 10.0.0.64
10/31-02:27:19.663675  [**] [1:10000001:1] ICMP test detected [∗∗] [Classification: Generic ICMP event] [Priority:3] {ICMP} 10.0.0.64 -> 10.0.0.74
10/31-02:27:20.658378  [**] [1:10000001:1] ICMP test detected [∗∗] [Classification: Generic ICMP event] [Priority:3] {ICMP} 10.0.0.74 -> 10.0.0.64
10/31-02:27:20.658404  [**] [1:10000001:1] ICMP test detected [∗∗] [Classification: Generic ICMP event] [Priority:3] {ICMP} 10.0.0.64 -> 10.0.0.74
10/31-02:27:21.766521  [**] [1:10000001:1] ICMP test detected [∗∗] [Classification: Generic ICMP event] [Priority:3] {ICMP} 10.0.0.74 -> 10.0.0.64
10/31-02:27:21.766551  [**] [1:10000001:1] ICMP test detected [∗∗] [Classification: Generic ICMP event] [Priority:3] {ICMP} 10.0.0.64 -> 10.0.0.74
10/31-02:27:22.766167  [**] [1:10000001:1] ICMP test detected [∗∗] [Classification: Generic ICMP event] [Priority:3] {ICMP} 10.0.0.74 -> 10.0.0.64
10/31-02:27:22.766197  [**] [1:10000001:1] ICMP test detected [∗∗] [Classification: Generic ICMP event] [Priority:3] {ICMP} 10.0.0.64 -> 10.0.0.74
^C*** Caught Int-Signal

You have to use ctrl-c to stop snort from running after the above output. What the above example shows is the 4 ICMP Echo Request and Reply messages between our Snort server (IP 10.0.0.64) and our other machine (10.0.0.74). If you look in /var/log/snort, you will also see a file with the name snort.log.nnnnnnnnnn (the n’s are replaced by numbers), which contains the same information that Snort printed to the screen.

Congratulations, if you have output similar to the above then you have successfully created a rule for Snort to alert on. Continue to the next section to Install Barnyard2.

Snort 2.9.9.x on Ubuntu – Part 2: Configuring Snort to Run as a NIDS

  1. Installing Snort
  2. Configuring Snort to Run as a NIDS
  3. Writing and Testing a Single Rule With Snort
  4. Installing Barnyard2
  5. Installing PulledPork
  6. Creating Upstart Scripts for Snort on Ubuntu 14
  7. Creating systemD Scripts for Snort on Ubuntu 16
  8. Installing BASE
  9. Conclusion

Configure Snort to Run as a NIDS

This is the second in a set of articles will guide you through the steps of installing and configuring Snort as a Network Intrusion Detection System (NIDS). In the previous article we installed the Snort binary and verified that it correctly executed. In this section, we will configure Snort to run as a NIDS by creating the files and folders that Snort expects when running as a NIDS, and we will learn about the Snort configuration file: snort.conf.

Basic Configuration

First off, for security reasons we want Snort to run as an unprivileged user. We create a snort user and group for this purpose:

sudo groupadd snort
sudo useradd snort -r -s /sbin/nologin -c SNORT_IDS -g snort

Next, we need to create a number of files and folders that Snort expects when running in NIDS mode.  We will then change the ownership of those files to our new snort user. Snort stores configuration files in /etc/snort, rules in /etc/snort/rules, /usr/local/lib/snort_dynamicrules, and stores its logs in /var/log/snort:

# Create the Snort directories:
sudo mkdir /etc/snort
sudo mkdir /etc/snort/rules
sudo mkdir /etc/snort/rules/iplists
sudo mkdir /etc/snort/preproc_rules
sudo mkdir /usr/local/lib/snort_dynamicrules
sudo mkdir /etc/snort/so_rules

# Create some files that stores rules and ip lists
sudo touch /etc/snort/rules/iplists/black_list.rules
sudo touch /etc/snort/rules/iplists/white_list.rules
sudo touch /etc/snort/rules/local.rules
sudo touch /etc/snort/sid-msg.map

# Create our logging directories:
sudo mkdir /var/log/snort
sudo mkdir /var/log/snort/archived_logs

# Adjust permissions:
sudo chmod -R 5775 /etc/snort
sudo chmod -R 5775 /var/log/snort
sudo chmod -R 5775 /var/log/snort/archived_logs
sudo chmod -R 5775 /etc/snort/so_rules
sudo chmod -R 5775 /usr/local/lib/snort_dynamicrules

# Change Ownership on folders:
sudo chown -R snort:snort /etc/snort
sudo chown -R snort:snort /var/log/snort
sudo chown -R snort:snort /usr/local/lib/snort_dynamicrules

We now need to move the following files from the extracted Snort tarball to the snort configuration folder:

  • classification.config describes the types of attack classifications that Snort understands (grouping rules into these types of classifications), such as trojan-activity or system-call-detect. The list of classifications can be found in section 3.4.6 of the Snort Manual
  • file_magic.conf describes rules for identifying file types.
  • reference.config contains urls that are referenced in the rules that provide more information about alerts.
  • snort.conf is the configuration file for Snort, it tells Snort where resources are located, and how to output alerts, among other things.
  • threshold.conf allows you to control the number of events that are required to generate an alert, which can help suppress noisy alerts. More information here.
  • attribute table.dtd lets Snort use outside information to determine protocols and policies. More information here.
  • gen-msg.map tells Snort which pre-processor is used by which rule. More information here.
  • unicode.map provides a mapping between Unicode languages and the identifier. This file is required by Snort in order to start.

Run the commands below to move the files listed above to the /etc/snort folder:

cd ~/snort_src/snort-2.9.9.0/etc/
sudo cp *.conf* /etc/snort
sudo cp *.map /etc/snort
sudo cp *.dtd /etc/snort

cd ~/snort_src/snort-2.9.9.0/src/dynamic-preprocessors/build/usr/local/lib/snort_dynamicpreprocessor/
sudo cp * /usr/local/lib/snort_dynamicpreprocessor/

The Snort configuration folder and file structure should now look like the following:

	user@snortserver:~$ tree /etc/snort
	/etc/snort
	├── attribute_table.dtd
	├── classification.config
	├── file_magic.conf
	├── gen-msg.map
	├── preproc_rules
	├── reference.config
	├── rules
	│.. ├── local.rules
	│.. ├── iplists
	│    .. ├── black_list.rules
	│    .. ├── white_list.rules
	├── sid-msg.map
	├── snort.conf
	├── so_rules
	├── threshold.conf
	└── unicode.map

Editing the Snort Configuration File

The Snort configuration file is stored at /etc/snort/snort.conf, and contains all the settings that Snort will use when it is run in NIDS mode. This is a large file (well over 500 lines), and contains a number of options for the configuration of Snort. We are interested in only a few settings at this time.

First, we need to comment out the lines that causes Snort to import the default set of rule files. We do this because we will be using PulledPork to manage our rulesets, which saves all the rules into a single file. The easy way to comment out all these lines is to use sed to append the “#” (hash) character to those lines.  This is accomplished by running the following command:

sudo sed -i 's/include \$RULE\_PATH/#include \$RULE\_PATH/' /etc/snort/snort.conf

The result of this command is that lines 547 to 651 in snort.conf will now be commented out, which will prevent Snort from loading those rule files on start-up. These rule files do not exist, and will cause Snort to generate an error if it tries to load a file that doesn’t exist. If you were to manually download the rule files from the snort website and extract them to the /etc/snort/rules folder, then you would want those rules to be un-commented out. We will use PulledPork (configured later) to manage all our rules and save them into a single file, which is why we need all those rule files to be commented out.

Next, we need to manually edit a few lines in the snort.conf file. Use vi (or your favorite editor) to edit /etc/snort/snort.conf:

sudo vi /etc/snort/snort.conf

First, we need to let Snort know the network range of your home network (the assets you are trying to protect) and all other external networks.  We do this by editing lines 45 and 48 of snort.conf to tell it the IP ranges of these two networks. In the example below, our home network is 10.0.0.0 with a 24 bit subnet mask (255.255.255.0), and our external networks are all other networks.

ipvar HOME_NET 10.0.0.0/24 	# (line 45) make this match your internal (friendly) network

Note: it is not recommended to set EXTERNAL_NET to !$HOME NET as recommended in some guides, since it can cause Snort to miss alerts.

Next we need to tell Snort about the locations of all the folders we created earlier.  These settings are also part of the snort.conf file.  I have included the line numbers after the hash so you can more easily find the setting (do not write the line number, just change the path to match what is below):

var RULE_PATH /etc/snort/rules						# line 104
var SO_RULE_PATH /etc/snort/so_rules				# line 105
var PREPROC_RULE_PATH /etc/snort/preproc_rules		# line 106

var WHITE_LIST_PATH /etc/snort/rules/iplists		# line 113
var BLACK_LIST_PATH /etc/snort/rules/iplists		# line 114

Finally, we want to enable one included rule file: /etc/snort/rules/local.rules.  We will use this file to store our own rules, including one rule that we will write in the next article in this series that will allow us to easily check that Snort is correctly generating alerts.  Un-comment the following line (line 545) by deleting the hash from the beginning of the line:

include $RULE_PATH/local.rules

Testing Snort with our Configuration File

Snort has the ability to validate the configuration file, and you should do this whenever you make modifications to snort.conf. Run the following command to have Snort test the configuration file:

sudo snort -T -c /etc/snort/snort.conf -i eth0

The -T tells snort to test, and -c tells snort the path to the configuration file, and you are required to specify an interface you want to listen to with -i (this is a new requirement as of 2.9.8.x version of snort). Make sure to use the correct interface. You should see some output, with the following lines at the end:

    ...
	Snort successfully validated the configuration!
	Snort exiting

Congratulations, if you have output similar to the above then you have successfully Configured Snort to run as a NIDS. Continue to the next section: Writing and Testing a Single Rule With Snort.

Snort 2.9.9.x on Ubuntu – Part 1: Installing Snort

  1. Installing Snort
  2. Configuring Snort to Run as a NIDS
  3. Writing and Testing a Single Rule With Snort
  4. Installing Barnyard2
  5. Installing PulledPork
  6. Creating Upstart Scripts for Snort on Ubuntu 14
  7. Creating systemD Scripts for Snort on Ubuntu 16
  8. Installing BASE
  9. Conclusion

Overview

This detailed set of articles will guide you through the steps of installing and configuring Snort as a Network Intrusion Detection System (NIDS), along with additional software that extends the functionality of your Snort system.  These articles are based on the Snort Installation guide I wrote, and which was posted in the documents section of the Snort website. If you are instead looking for a quick install guide for Snort on Ubuntu, please see my other standalone article: Snort 2.9.9.x on Ubuntu (quick install guide). If you want to test the new alpha version of Snort, please see my articles: Installing Snort++ (Version 3.0 Alpha 4) in Ubuntu.

These articles are designed to take you step-by-step through the installation, configuration, and testing of each component of a Snort system.  I will explain the design decisions and the purpose of specific commands throughout this guide, which will will help you understand how Snort is installed, configured, tested, executed, and how it interfaces with its supporting software.   You can follow the steps in this guide, but choose to skim the detailed explanations if you would like, and you will still end up with a working Snort system. However, if you take the effort to understand every step you will have a much deeper understanding of Snort, be better able to troubleshoot issues, and fully customize your Snort installation.

Supported Software Versions

This guide has been tested with Snort 2.9.9.0 on both the x86 and x64 architectures of Ubuntu 14, and 16. This guide will probably work on other Ubuntu-derived distributions, and I have been told that it works fairly well (with some modifications) for Debian systems including the Raspberry Pi. This guide will note VMware specific configuration options, if you want to run Snort as a virtual machine.  At the time of this writing, the latest version of Snort is 2.9.9.0, and the instructions below are tailored for that version.  If you want to use more recent versions of any of the software installed below (updated versions released after the publication of this guide), it should work without significant changes, but obviously you may encounter issues I can’t foresee.

On its own, Snort runs in standalone mode as a packet sniffer and logger.  With a few additional applications and some configuration, a Snort system becomes much more useful as a NIDS.  The supporting software components we will install in this set of articles are:

  • Barnyard2 is a dedicated spooler for Snort’s unified2 binary output format. Packet processing is very resource intensive, so to reduce the load on the Snort process: we have Snort save suspicious packets to a directory in a native binary format without processing the packets. Barnyard2 then asynchronously processes those packets and saves them in a MySQL database.
  • PulledPork is a Perl script that automatically downloads the latest Snort rulesets. Since the threat landscape is constantly evolving, new rulesets are required by Snort to identify the latest types of suspicious traffic (rulesets are similar to antivirus signatures).
  • BASE provides a web front-end to query and analyze the alerts coming from a Snort system.

Alternatives to This Guide

If you just want a Snort system installed and running without having to compile and install all the individual components, there are some alternatives:

  • Autosnort: a script that will install Snort and supporting software on your system.
  • Install Snort from the Ubuntu repository: This version of Snort tends to be out of date, and doesn’t give you the flexibility provided by compiling your own version of Snort.
  • Security Onion: A live CD based on Ubuntu with Snort already installed.

Recommendations for Running Snort in a Virtual Machine

If you are running Snort as a VMware ESXi virtual machine, it is recommended that you use the vmxnet 3 network adapter.

Onwards

So let’s get started. First, we need to ensure that the network card does not truncate over-sized packets.  From The Snort Manual:

Some network cards have features named “Large Receive Offload” (lro) and “Generic Receive Offload” (gro). With these features enabled, the network card performs packet reassembly before they’re processed by the kernel. By default, Snort will truncate packets larger than the default snaplen of 1518 bytes. In addition, LRO and GRO may cause issues with Stream5 target-based reassembly. We recommend that you turn off LRO and GRO.

Edit /etc/network/interfaces as an admin:

sudo vi /etc/network/interfaces

Append the following two lines for each network interface you will have Snort listen on, making sure to change eth0 to match your interface name (See note below for Ubuntu 16):

post-up ethtool -K eth0 gro off
post-up ethtool -K eth0 lro off

Important note for people running Ubuntu 16: Begining with Ubuntu 15.10, network interfaces no longer follow the ethX standard (eth0, eth1, …). Instead, interfaces names are assigned as Predictable Network Interface Names. This means you need to check the names of your interfaces using ifconfig -a. In my case, what was originally eth0 is now ens160. If you are running Ubuntu 15.10, anywhere in this guide you see eth0, you will need to replace with your new interface name.

an example of how the /etc/network/interfaces file should look for a single interface:

# This file describes the network interfaces available on your system
# and how to activate them. For more information, see interfaces(5).
source /etc/network/interfaces.d/*
# The loopback network interface
auto lo
iface lo inet loopback
# The primary network interface
auto eth0
iface eth0 inet dhcp
post-up ethtool -K eth0 gro off
post-up ethtool -K eth0 lro off

Next we will create a directory to save the downloaded tarball files:

mkdir ~/snort_src
cd ~/snort_src

Next we need to install all the prerequisites from the Ubuntu repositories:

sudo apt-get install -y build-essential libpcap-dev libpcre3-dev libdumbnet-dev bison flex zlib1g-dev liblzma-dev openssl libssl-dev

Breakdown of the packages you are installing:

  • build-essential: provides the build tools (GCC and the like) to compile software.
  • bison, flex: parsers required by DAQ (DAQ is installed later below).
  • libpcap-dev: Library for network traffic capture required by Snort.
  • libpcre3-dev: Library of functions to support regular expressions required by Snort.
  • libdumbnet-dev: the libdnet library provides a simplified, portable interface to several low-level networking routines. Many guides for installing Snort install this library from source, although that is not necessary.
  • zlib1g-dev: A compression library required by Snort.
  • liblzma-dev: Provides decompression of swf files (adobe flash)
  • openssl and libssl-dev: Provides SHA and MD5 file signatures

The final library that Snort requires is the development library for Nghttp2: a HTTP/2 C Library which implements the HPAC header compression algorithm.

In Ubuntu 16 the install is easy:

# Ubuntu 16 only:
sudo apt-get install -y libnghttp2-dev

for Ubuntu 14, we need to compile from source:

# Ubuntu 14 only (not Ubuntu 16)
sudo apt-get install -y autoconf libtool pkg-config
cd ~/snort_src
wget https://github.com/nghttp2/nghttp2/releases/download/v1.17.0/nghttp2-1.17.0.tar.gz
tar -xzvf nghttp2-1.17.0.tar.gz
cd nghttp2-1.17.0
autoreconf -i --force
automake
autoconf
./configure --enable-lib-only
make
sudo make install

Snort uses the Data Acquisition library (DAQ) to abstract calls to packet capture libraries. DAQ is downloaded and installed from the Snort website:

cd ~/snort_src
wget https://snort.org/downloads/snort/daq-2.0.6.tar.gz
tar -xvzf daq-2.0.6.tar.gz
cd daq-2.0.6
./configure
make
sudo make install

Now we are ready to install Snort from source. When we configure the build of Snort, we use the --enable-sourcefire flag, which enables Packet Performance Monitoring (PPM), and matches the way the sourcefire team builds Snort.

cd ~/snort_src
wget https://snort.org/downloads/snort/snort-2.9.9.0.tar.gz
tar -xvzf snort-2.9.9.0.tar.gz
cd snort-2.9.9.0
./configure --enable-sourcefire
make
sudo make install

Run the following command to update shared libraries:

sudo ldconfig

Since the Snort installation places the Snort binary at /usr/local/bin/snort, it is a good policy to create a symlink to /usr/sbin/snort:

sudo ln -s /usr/local/bin/snort /usr/sbin/snort

The last step of our Snort installation is to test that the Snort Binary runs. Execute Snort with the -V flag, which causes Snort to show the version number:

/usr/sbin/snort -V

and you should see output similar to the following:

user@snortserver:~$ snort -V

      Version 2.9.9.0 GRE (Build 56)
      By Martin Roesch & The Snort Team: http://www.snort.org/contact#team
      Copyright (C) 2014-2016 Cisco and/or its affiliates. All rights reserved.
      Copyright (C) 1998-2013 Sourcefire, Inc., et al.
      Using libpcap version 1.7.4
      Using PCRE version: 8.38 2015-11-23
      Using ZLIB version: 1.2.8

Congratulations, if you have output similar to the above then you have successful installed Snort. Continue to the next section to Configure Snort to Run as a NIDS.

Installing OpenAppID with Snort 2.9.9.x on Ubuntu

The instructions below show how to install OpenAppId in Snort 2.9.9.x on Ubuntu 14 and Ubuntu 16.

If you want a more in-depth explanation of the install steps, as well as instructions on how to configure and enhance Snort’s functionality, see my in-depth series for installing Snort on Ubuntu, or my Quick Install Guide for Snort 2.9.9.x on Ubuntu. If you want to test the new alpha version of Snort (Version 3.0 Alpha 4), please see my article: Installing Snort 3 Alpha in Ubuntu.

Let Us Get Started

So let’s get started. First we need tocreate a directory to save the downloaded tarball files:

mkdir ~/snort_src
cd ~/snort_src

Next we install all the Snort pre-requisites from the Ubuntu repositories:

sudo apt-get install -y build-essential libpcap-dev libpcre3-dev libdumbnet-dev bison flex zlib1g-dev liblzma-dev

Snort 2.9.9.x needs the development libraries for Nghttp2. On Ubuntu 16 this is simple:

# Ubuntu 16 only (not Ubuntu 14)
sudo apt-get install -y libnghttp2-dev

On Ubuntu 14, we do this from scratch:

# Ubuntu 14 only (not Ubuntu 16)
sudo apt-get install -y autoconf libtool pkg-config
cd ~/snort_src
wget https://github.com/nghttp2/nghttp2/releases/download/v1.17.0/nghttp2-1.17.0.tar.gz
tar -xzvf nghttp2-1.17.0.tar.gz
cd nghttp2-1.17.0
autoreconf -i --force
automake
autoconf
./configure --enable-lib-only
make
sudo make install

Next we want to install the pre-requisites that are specific to OpenAppID:

sudo apt-get install -y libluajit-5.1-dev pkg-config openssl libssl-dev

Download and install Data Acquisition library (DAQ) from the Snort website:

cd ~/snort_src
wget https://www.snort.org/downloads/snort/daq-2.0.6.tar.gz
tar -xvzf daq-2.0.6.tar.gz
cd daq-2.0.6
./configure
make
sudo make install

Installing Snort

Now we are ready to install Snort from source. We use the ‑‑enable-open-appid option, which prepares Snort to be built with OpenAppID support. We also use the ‑‑enable-sourcefire option, which enables the Sourcefire-specific build options:

Now we are ready to install Snort from source:

cd ~/snort_src
wget https://snort.org/downloads/snort/snort-2.9.9.0.tar.gz
tar -xvzf snort-2.9.9.0.tar.gz
cd snort-2.9.9.0
./configure --enable-sourcefire --enable-open-appid
make
sudo make install

Run the following command to update shared libraries:

sudo ldconfig

Since the Snort installation places the Snort binary at /usr/local/bin/snort, it is common to create a symlink to /usr/sbin/snort:

sudo ln -s /usr/local/bin/snort /usr/sbin/snort

We need to a few configuration things to prepare Snort for use. More detailed information on the steps below can be found here .

Create the needed directories and empty files:

# Create the Snort directories:
sudo mkdir /etc/snort
sudo mkdir /etc/snort/rules
sudo mkdir /etc/snort/rules/iplists
sudo mkdir /etc/snort/preproc_rules
sudo mkdir /usr/local/lib/snort_dynamicrules
sudo mkdir /etc/snort/so_rules

# Create some files that stores rules and ip lists
sudo touch /etc/snort/rules/iplists/black_list.rules
sudo touch /etc/snort/rules/iplists/white_list.rules
sudo touch /etc/snort/rules/local.rules
sudo touch /etc/snort/sid-msg.map

# Create our logging directories:
sudo mkdir /var/log/snort
sudo mkdir /var/log/snort/archived_logs

# Adjust permissions:
sudo chmod -R 5775 /etc/snort
sudo chmod -R 5775 /var/log/snort
sudo chmod -R 5775 /var/log/snort/archived_logs
sudo chmod -R 5775 /etc/snort/so_rules
sudo chmod -R 5775 /usr/local/lib/snort_dynamicrules

Finally copy some files:

cd ~/snort_src/snort-2.9.9.0/etc/
sudo cp *.conf* /etc/snort
sudo cp *.map /etc/snort
sudo cp *.dtd /etc/snort
cd ~/snort_src/snort-2.9.9.0/src/dynamic-preprocessors/build/usr/local/lib/snort_dynamicpreprocessor/
sudo cp * /usr/local/lib/snort_dynamicpreprocessor/

Comment out the rule files that are automatically loaded by Snort in snort.conf (since we don’t have any rule files downloaded at this time) by running the following command:

sudo sed -i 's/include \$RULE\_PATH/#include \$RULE\_PATH/' /etc/snort/snort.conf

Next we need to edit the /etc/snort/snort.conf Snort configuration file as root.

sudo vi /etc/snort/snort.conf

Line 45 of /etc/snort/snort.conf: the variable HOME_NET should match your internal (defended) network. In the below example our HOME NET is 10.0.0.0 with a 24-bit subnet mask (255.255.255.0):

ipvar HOME_NET 10.0.0.0/24

Still editing snort.conf, next we need to modify some file paths to match the lines below, beginning at line 104:

var RULE_PATH /etc/snort/rules
var SO_RULE_PATH /etc/snort/so_rules
var PREPROC_RULE_PATH /etc/snort/preproc_rules

var WHITE_LIST_PATH /etc/snort/rules/iplists
var BLACK_LIST_PATH /etc/snort/rules/iplists

Still editing snort.conf, next we need to enable the local.rules file by un-commenting (remove the hash symbol from the beginning) line 546 so it looks like the following:

include $RULE_PATH/local.rules

Once you have saved your edits to snort.conf, you should test that snort can load this configuration file without any errors. You do this by running snort with the -T flag to tell snort to test the file, the -c flag to identify the path of the snort.conf file, and the -i flag for a network interface that Snort will listen on (Note that Ubuntu 16 can have different interface names, which you can check with the ifconfig command). This is shown below. Output has been truncated to the final few lines to show success:

user@snortserver:~$ sudo snort -T -i eth0 -c /etc/snort/snort.conf
   (...)
   Snort successfully validated the configuration!
   Snort exiting
user@snortserver:~$

Download and Extract the Application Detector Package

Now we need to download the Application Detector Package, which contains the rules for detecting types of traffic. You can find this file on the Snort.org download page, listed as snort-openappid.tar.gz. You should download the latest version of this package, the version below is the latest as of writing, but will probably have changed, as the Snort team is updating regularly:

cd ~/snort_src
wget https://snort.org/downloads/openappid/4602 -O snort-openappid.tar.gz
tar -xvzf snort-openappid.tar.gz

The result of the above command will create a odp directory which holds all the application detector files. We want to move that folder under our Snort rules folder:

sudo cp -r ~/snort_src/odp/ /etc/snort/rules/

and create one folder for third-party developed application detectors:

sudo mkdir /usr/local/lib/thirdparty

Editing snort.conf to enable OpenAppID

We need to enable the OpenAppID pre-processor, then we need to have Snort output the AppID data. The 2.9.9.0 release of snort doesn’t seem to create the default snort.conf correctly (which would include the necessary OpenAppID settings), so rather than enabling them by uncommeting them, we will need to add these lines manually. To enable the pre-processor, edit the snort.conf file (located at /etc/snort/snort.conf) as root, and add the following lines before the commented-out section 6 (line 513 for me):

preprocessor appid: app_stats_filename appstats-u2.log, \
   app_stats_period 60, \
   app_detector_dir /etc/snort/rules

This tells Snort the file name of the log to output statistics to (appstats-u2-log), how often to write to the log (every 60 seconds), and where to find the odf folder we downloaded earlier.

While still in the /etc/snort/snort.conf file, add the following lower down (below the commented-out section 6, around line 526 ):

output unified2: filename snort.log, limit 128, appid_event_types

this directive tells Snort to output alerts in the unified2 binary format to the snort.log, the size of the log, and also to output AppID data to the same location.

Now test the Snort configuration file to verify there are no errors:

sudo /usr/local/bin/snort -T -c /etc/snort/snort.conf -i eth0

as above, you should see the text: Snort successfully validated the configuration! If not, fix the errors that are reported.

Collecting OpenAppID Data

Use the below command to start collecting packets (change the interface as needed), and use ctrl-c to stop the collection:

sudo /usr/local/bin/snort -c /etc/snort/snort.conf -i eth0
ctrl-c

To generate OpenAppID data while Snort is running as above, try browsing to a website, making sure the data is visible to the interface that snort is listening on, either by passing that data directly through the Snort interface, or by ensuring that your network infrastructure copies network traffic to the Snort server (span port, port mirroring, or promiscuous mode, for example).

Once you have collected data (remember that we are writing data out every 60 seconds, so wait longer than a minute before cancelling the collection), you should see file(s) in /var/log/snort/ with the name: appstats-u2.log.nnnnnnnnnn (where the n’s are numbers). these are the OpenAppID data files. We can process them with u2openappid, which is located in /usr/local/bin.

A simple example of this processing:

noah@snort:~$ sudo u2openappid /var/log/snort/appstats-u2.log.1483841898 
statTime="1449426240",appName="HTTP",txBytes="0",rxBytes="8152"
statTime="1449426300",appName="HTTP",txBytes="0",rxBytes="9542"
statTime="1449426240",appName="DNS",txBytes="301",rxBytes="0"
statTime="1449426240",appName="__unknown",txBytes="12376",rxBytes="1118"
statTime="1449426300",appName="DNS",txBytes="761",rxBytes="0"

In the above example, I used curl over the same interface snort was listening on to request www.xkcd.com. The various application detectors show the amount of traffic for each detector, DNS, HTTP, and the like.

An more complex example of this processing (from an older version of OpenAppID, but still valid):

noah@snort:~$ sudo /usr/local/bin/u2openappid /var/log/snort/appstats-u2.log.1428300780 
statTime="1428300720",appName="curl",txBytes="740",rxBytes="6894"
statTime="1428300720",appName="http",txBytes="1306",rxBytes="7384"
statTime="1428300720",appName="ubuntu",txBytes="566",rxBytes="490"
statTime="1428300720",appName="python_urllib",txBytes="566",rxBytes="490"
statTime="1428300780",appName="https",txBytes="777",rxBytes="1444"
statTime="1428300780",appName="https",txBytes="1040",rxBytes="2116"
statTime="1428300840",appName="google",txBytes="3001",rxBytes="4684"
statTime="1428300840",appName="facebook",txBytes="66705",rxBytes="1841294"
statTime="1428300840",appName="firefox",txBytes="9080",rxBytes="29282"
statTime="1428300840",appName="google_analytic",txBytes="2441",rxBytes="17912"
statTime="1428300840",appName="http",txBytes="10591",rxBytes="49907"
statTime="1428300840",appName="https",txBytes="68049",rxBytes="1846327"
statTime="1428300840",appName="ssl_client",txBytes="66013",rxBytes="1840694"
statTime="1428300840",appName="linux_mint",txBytes="955",rxBytes="2912"
statTime="1428300840",appName="python_urllib",txBytes="1511",rxBytes="20625"
statTime="1428300720",appName="dns",txBytes="380",rxBytes="538"
statTime="1428300720",appName="ssh",txBytes="10487",rxBytes="24943"
statTime="1428300720",appName="rtp",txBytes="592",rxBytes="0"
statTime="1428300780",appName="dhcp",txBytes="1368",rxBytes="0"
statTime="1428300780",appName="dns",txBytes="482",rxBytes="936"
statTime="1428300780",appName="vnc",txBytes="219685",rxBytes="5131591"
statTime="1428300780",appName="https",txBytes="210284",rxBytes="1373974"
statTime="1428300780",appName="mdns",txBytes="8316",rxBytes="0"
statTime="1428300840",appName="dns",txBytes="1754",rxBytes="5372"
statTime="1428300840",appName="facebook",txBytes="3109",rxBytes="11074"
statTime="1428300840",appName="https",txBytes="3109",rxBytes="11074"
statTime="1428300840",appName="ssl_client",txBytes="3109",rxBytes="11074"

If you have output similar to the above, then Snort is installed and works. To generate the above output, I browsed to xkcd.com with curl on one computer, and to facebook with firefox on another computer. Looking through the output, the applications listed with the same statTime are from the same request. When I used curl to request xkcd.com, snort detected the various types of traffic defined by the various detectors.

If you want to learn more about how to run Snort, and how to install additional software to enhance a Snort system, see my in-depth series on installing Snort on Ubuntu. If you have any feedback (recommendations or corrections), please let me know here.